Термоэмиссионный преобразователь энергии - definition. What is Термоэмиссионный преобразователь энергии
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

%ما هو (من)٪ 1 - تعريف

Термоэмиссионный преобразователь энергии

Термоэмиссионный преобразователь энергии      
(ТЭП)

термоэлектронный преобразователь энергии, термоионный преобразователь энергии, устройство для непосредственного преобразования тепловой энергии в электрическую на основе явления термоэлектронной эмиссии (См. Термоэлектронная эмиссия). Простейший ТЭП состоит из двух электродов (катода, или эмиттера, и анода, или коллектора, изготовляемых из тугоплавких металлов, обычно Mo, Re, W), разделённых вакуумным промежутком (рис. 1). К эмиттеру от источника тепла подводится тепловая энергия, достаточная для возникновения заметной термоэлектронной эмиссии с поверхности металла. Электроны, преодолевая межэлектродное пространство (несколько десятых долей мм), попадают на поверхность коллектора, создавая на нём избыток отрицательных зарядов и увеличивая его отрицательный потенциал. Если непрерывно обеспечивать подвод тепла к эмиттеру и соответствующее охлаждение коллектора (который получает тепло от достигающих его электронов), то во внешней цепи будет поддерживаться электрический ток и таким образом совершаться работа. Так как ТЭП представляет собой по существу тепловую машину, рабочим телом которой служит "электронный газ" (электроны "испаряются" с эмиттера - нагревателя и "конденсируются" на коллекторе - холодильнике), то кпд ТЭП не может превосходить кпд Карно цикла.

Напряжение, развиваемое ТЭП (0,5- 1 в), - порядка контактной разности потенциалов (См. Контактная разность потенциалов), но меньше её на величину падения напряжения на межэлектродном зазоре и потерь напряжения на коммутационных проводах (рис. 2). Максимальная плотность тока, генерируемого ТЭП, ограничена эмиссионной способностью эмиттера и может достигать нескольких десятков а 1 см2 поверхности. Для получения оптимальных величин работы выхода (См. Работа выхода) эмиттера (2,5-2,8 эв) и коллектора (1,0-1,7 эв) и для компенсации объёмного заряда электронов, образующегося вблизи электродов, в зазор между ними обычно вводят легко ионизируемые пары Cs. Положительные ионы цезия образуются при столкновении атомов Cs с быстрыми и тепловыми электронами как на горячем катоде (Поверхностная ионизация), так и в межэлектродном объёме (вследствие либо однократного соударения атомов Cs с быстрыми и тепловыми электронами, либо ступенчатой ионизации, при которой в результате 1-го соударения с электроном атом Cs переходит в возбуждённое состояние, а при последующих - ионизируется). В последнем случае ТЭП работает в так называемое дуговом режиме - наиболее употребительном. При используемых в современных ТЭП температурах электродов (1700-2000 К на катоде и 800-1100 К на аноде) их удельная мощность (в расчёте на 1 см2 поверхности катода) достигает десятков вт, а кпд может превышать 20\%.

По роду источника тепла различают ядерные (реакторные и радиоизотопные), солнечные и газопламенные ТЭП. В ядерных ТЭП используется тепло, выделяющееся в результате реакции ядерного деления (в реакторных ТЭП) или распада радиоактивного изотопа (в радиоизотопных). В 1970 в СССР создан первый в мире термоэмиссионный преобразователь-реактор "Топаз" электрической мощностью около 10 квт. В солнечных ТЭП нагрев эмиттера осуществляется за счёт тепловой энергии солнечного излучения (с применением Гелиоконцентраторов). Газопламенные ТЭП работают на тепле, выделяющемся при сжигании органического топлива.

Важные преимущества ТЭП по сравнению с традиционными электромашинными преобразователями - отсутствие в них движущихся частей, компактность, высокая надёжность, возможность эксплуатации без систематического обслуживания. В настоящее время (середина 70-х гг.) достигнут ресурс непрерывной работы одиночного ТЭП свыше 40000 ч. Перспективно использование ТЭП в качестве высокотемпературного звена многоступенчатых преобразователей энергии, например, в сочетании с термоэлектрическими преобразователями, работающими при более низких температурах. В СССР, США, Франции и ряде др. стран ведутся интенсивные работы по созданию ТЭП, пригодных для массового промышленного использования.

Лит.: Елисеев В. Б., Пятницкий А. П., Сергеев Д. И., Термоэмиссионные преобразователи энергии, М., 1970; Термоэмиссионные преобразователи и низкотемпературная плазма, М., 1973; Технология термоэмиссионных преобразователей. Справочник, под ред. С. В. Рябикова, М., 1974.

Н. С. Лидоренко.

Рис. 1. Схема термоэмиссионного преобразователя: К - катод, или эмиттер; А - анод, или коллектор; R - внешняя нагрузка; QК - тепло, подводимое к катоду; QА - тепло, отводимое от анода; 1 - атомы цезия; 2 - ионы цезия; 3 - электроны.

Рис. 2. Распределение потенциальной энергии электронов в межэлектродном зазоре при недостаточной концентрации ионов цезия (1), в условиях компенсации объёмного заряда (2) и в дуговом режиме (3): УФК и УФА - уровни Ферми катода (эмиттера) и анода (коллектора); E - энергия; EК и EА - работа выхода катода и анода; ΔV3, ΔVпр и V - падение напряжения соответственно на межэлектродном зазоре, на коммутационных приводах и во внешней цепи; е - заряд электрона; d - межэлектродное расстояние.

Преобразователь электрической энергии         
  •  Пример повышающего (step-up) преобразователя, — автомобильный инвертор. Преобразует постоянное напряжение бортовой сети (12V) в переменное 220V.
ПРОЦЕСС
Преобразователь напряжения
Преобразователь электрической энергии — электротехническое устройство, преобразующее электрическую энергию с одними значениями параметров и/или показателей качества в электрическую энергию с другими значениями параметров и/или показателей качества.ГОСТ Р 50369-92 Электроприводы. Термины и определения Для реализации преобразователей широко используются полупроводниковые приборы, так как они обеспечивают высокий .
Встречно-штыревой преобразователь         
  • Преобразователи в реальном устройстве на ПАВ
Встречно-штыревой преобразователь, ВШПнаименование по ГОСТ 28170-89, также встречно-гребёнчатый преобразователь — устройство, состоящее из двух взаимосвязанных, имеющих форму гребёнки, металлических покрытий (наподобие застёжки-молнии), которые применяются на пьезоэлектрической подложке из кварца, ниобата и танталата лития, а также ряда других ориентированных монокристаллов.

ويكيبيديا

Термоэмиссионный преобразователь

Термоэмиссионный преобразователь — преобразователь тепловой энергии в электрическую на основе использования эффекта термоэлектронной эмиссии. Представляет собой ламповый диод, к катоду которого подводится тепло, разогревая его до высокой температуры. Для нейтрализации влияния поля объёмного заряда и увеличения термоэмиссии путём снижения работы выхода катода в колбу прибора вводятся пары цезия. По сравнению с другими методами преобразования тепловой и химической энергии в электрическую термоэмиссионный метод имеет следующие преимущества:

  • самые низкие весовые характеристики на единицу выходной мощности и возможность работы при высокой температуре холодильника — анода;
  • отсутствие в них движущихся частей;
  • высокая надёжность и компактность; возможность эксплуатации без систематического обслуживания;

Эти преимущества термоэмиссионного преобразователя могут быть использованы для создания автономных энергетических генераторов космических аппаратов с использованием ядерных реакторов. Термоэмиссионные преобразователи также могут применяться в обычных тепловых электростанциях, в качестве надставок, повышающих коэффициент полезного действия преобразования тепловой энергии в электрическую. Первый в мире термоэмиссионный реактор-преобразователь (установка «Топаз-1») был создан в СССР в 1970 году.